Raughton Head CE Primary School Mathematics Progression Map

Reception to Year 6

Guidance

The progression maps are structured using the topic headings as they appear in the National Curriculum
Each of the topics have been divided into sub-categories to illustrate progression in key areas
All programmes of study are included and some appear twice. This is indicated in the text and occurs where:

- The statement has central relevance to more than one sub-category within a topic;
- The statement has central relevance to more than one mathematics topic. This is done to reflect the aims of the curriculum that pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems (Mathematics programme of study: Key Stages 1 and 2, page 3). The connections made are not intended to be exhaustive and teachers should seek to support pupils in making other connections
- Statements in italics are non-statutory

Number - Number and Place Value

COUNTING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
recite numbers past 5; say one number name for each item in order: 1,2,3,4,5; know that the last number reached when counting a small set of objects tells you how many there are in total	count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number	continued practice	continued practice	count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
count objects, actions and sounds; count beyond 10	count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of $4,8,50$ and 100;	count in multiples of 6, $7,9,25$ and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
verbally count beyond 20, recognising the pattern of the counting system (ELG)	given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		
COMPARING NUMBERS						
compare quantities using language: 'more than', 'fewer than'	use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100; use <, > and = signs	compare and order numbers up to 1000	compare numbers with the same number of decimal places up to two decimal places (copied from Fractions)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
compare numbers						
compare quantities up to						

10 in different
contexts,
recognising when
one quantity is
greater than, less
than or the same
as the other
quantity (ELG)

IDENTIFYING, REPRESENTING AND ESTIMATING NUMBERS

develop fast recognition of up to 3 objects, without having to count them individually (subitising); show 'finger numbers' up to 5 ; link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5; experiment with their own symbols and marks as well as numerals subitise; link the number symbol (numeral) with its cardinal number value	identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations

subitise
(recognising
quantities
without
counting) up to 5
(ELG)

READING AND WRITING NUMBERS (including Roman Numerals)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5; experiment with their own symbols and marks as well as numerals link the number symbol (numeral) with its cardinal number value	read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks (copied from Measurement)	read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read, write, order and compare numbers to at least 1 000000 and determine the value of each digit (appears also in Comparing Numbers) read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value)
UNDERSTANDING PLACE VALUE						
understand the 'one more than/one less than' relationship between consecutive numbers; explore	(non-statutory) begin to recognize place value in numbers beyond 20 by reading, writing and comparing numbers up to 100	recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	read, write, order and compare numbers to at least 1 000000 and determine the value of each digit	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)

the composition of numbers to 10 have a deep understanding of numbers to 10, including the composition of each number (ELG)				find the effect of dividing a one- or twodigit number by 10 and 100 , identifying the value of the digits in the answer as units, tenths and hundredths (copied from Fractions)	(appears also in Reading and Writing Numbers) recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (copied from Fractions)	identify the value of each digit to three decimal places and multiply and divide numbers by 10, 100 and 1000 where the answers are up to three decimal places (copied from Fractions)
ROUNDING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				round any number to the nearest 10,100 or 1000	round any number up to 1000000 to the nearest 10, 100, 1 000, 10000 and 100 000	round any whole number to a required degree of accuracy
				round decimals with one decimal place to the nearest whole number (copied from Fractions)	round decimals with two decimal places to the nearest whole number and to one decimal place (copied from Fractions)	solve problems which require answers to be rounded to specified degrees of accuracy (copied from Fractions)
	PROBLEM SOLVING					
solve real world mathematical problems with numbers up to 5	solve real world mathematical problems with numbers up to 5 (non-statutory) solve simple concrete problems	use place value and number facts to solve problems	solve number problems and practical problems involving these ideas	solve number and practical problems that involve all of the above and with increasingly large positive numbers	solve number problems and practical problems that involve all of the above	solve number and practical problems that involve all of the above

Number - Addition and Subtraction

NUMBER BONDS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100	continued practice of simple number bond work	continued practice of simple number bond work	consolidation of simple number bond work	consolidation of simple number bond work
MENTAL CALCULATION						
automatically recall number bonds for numbers 0-5 and some to 10	add and subtract one-digit and twodigit numbers to 20, including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three onedigit numbers	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	(non-statutory) continue to practice mental methods with increasingly	add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers
automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts (ELG)				to aid fluency		
	read, write and interpret mathematical statements	show that addition of two numbers can be done in any order (commutative) and				use their knowledge of the order of operations to carry out calculations

	involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	subtraction of one number from another cannot				involving the four operations
WRITTEN METHODS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)	apply their increasing knowledge of mental and written methods	add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	(non-statutory) practice the formal written methods of columnar addition and subtraction with increasingly larger numbers to aid fluency)
INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS						
		recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.

PROBLEM SOLVING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed evenly (ELG)	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why
		solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)				Solve problems involving addition, subtraction, multiplication and division

Number - Multiplication and Division

MULTIPLICATION \& DIVISION FACTS

MULTIPLICATION \& DIVISION FACTS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of $4,8,50$ and 100 (copied from Number and Place Value)	count in multiples of $6,7,9,25$ and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	continued practice
		recall and use multiplication and division facts for the 2 , 5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
MENTAL CALCULATION						
			write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers
		show that multiplication of two numbers can be done		recognise and use factor pairs and commutativity in	multiply and divide whole numbers and those involving	associate a fraction with division and calculate decimal

		in any order (commutative) and division of one number by another cannot		mental calculations (appears also in Properties of Numbers)		decimals by 10 and 1000		fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$) (copied from Fractions)
WRITTEN CALCULATION								
Reception	Year 1	Year 2	Year 3	Year 4		Year 5		Year 6
		calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for twodigit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and three-digit numbers by a one-digit number using formal written layout		ply numbers 4 digits by a or two-digit ber using a al written od, including multiplication o-digit bers		ly multi-digit numbers 4 digits by a two-digit number using the I written method of long lication
						numbers up digits by a onenumber using ormal written od of short on and pret inders priately for ontext		numbers up to 4-digits wo-digit whole number the formal written od of short division appropriate for the xt divide numbers up to s by a two-digit whole er using the formal n method of long n, and interpret nders as whole number iders, fractions, or by

						rounding, as appropriate for the context
					use written division methods in cases where the answer has up to two decimal places ((copied from Fractions (including decimals))	

PROPERTIES OF NUMBERS: MULTIPLES, FACTORS, PRIMES, SQUARE AND CUBE NUMBERS

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				recognise and use factor pairs and commutativity in mental calculations (repeated)	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	identify common factors, common multiples and prime numbers use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)
					know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers	
					establish whether a number up to 100 is prime and recall prime numbers up to 19	
					recognise and use square numbers and cube numbers,	calculate, estimate and compare volume of cubes and cuboids

					and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	using standard units, including centimetres cubed (cm^{3}) and cubic meters $\left(m^{3}\right)$, and extending to other units such as mm^{3} and km^{3} (copied from Measures)
ORDER OF OPERATIONS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
						use their knowledge of the order of operations to carry out calculations involving the four operations (BODMAS)
INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS						
			estimate the answer to a calculation and use inverse operations to check answers (copied from Addition and Subtraction)	estimate and use inverse operations to check answers to a calculation (copied from Addition and Subtraction)	continued practice	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy

PROBLEM SOLVING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division
					solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	
					solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)

Number - Fractions (including Decimals and Percentages)

COUNTING IN FRACTIONAL STEPS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		Pupils should count in fractions up to 10 , starting from any number and using the $1 / 2$ and $2 / 4$ equivalence on the number line (Non Statutory Guidance)	count up and down in tenths	count up and down in hundredths	(non-statutory) pupils continue to practice counting forwards and backwards in simple fractions. Extend counting using decimals and fractions including bridging zero	continued practice
RECOGNISING FRACTIONS						
	recognise, find and name a half as one of two equal parts of an object, shape or quantity recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	recognise, find, name and write fractions ${ }^{1} / 3^{\prime}{ }^{1} / 4^{\prime}{ }^{2} /$ and $^{3} / 4$ of a length, shape, set of objects or quantity	recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10 . recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators	recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (appears also in Equivalence)	continued practice
COMPARING FRACTIONS						
			compare and order unit fractions, and fractions with the same denominators	continued practice	compare and order fractions whose denominators are all multiples of the same number	compare and order fractions, including fractions >1

COMPARING DECIMALS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				compare numbers with the same number of decimal places up to two decimal places	read, write, order and compare numbers with up to three decimal places	identify the value of each digit in numbers given to three decimal places
ROUNDING INCLUDING DECIMALS						
				round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place	solve problems which require answers to be rounded to specified degrees of accuracy
EQUIVALENCE (INCLUDING FRACTIONS, DECIMALS AND PERCENTAGES)						
		write simple fractions e.g. ${ }^{1 / 2}$ of 6 $=3$ and recognise the equivalence of $2 / 4$ and $/{ }_{2}$.	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination
				recognise and write decimal equivalents of any number of tenths or hundredths	read and write decimal numbers as fractions (e.g. 0.71 $={ }^{71} /{ }_{100}$) recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }_{8} / 8$)
				recognise and write decimal equivalents to $1 / 4^{\prime}{ }^{1} / 2^{\prime}{ }^{3} / 4$	recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction	recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.

MULTIPLICATION AND DIVISION OF FRACTIONS

MULTIPLICATION AND DIVISION OF DECIMALS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6 multiply one-digit numbers with up to two decimal places by whole numbers
				find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths	continued practice	multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places
						identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places
						associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$)
						use written division methods in cases where the answer has up to two decimal places

PROBLEM SOLVING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	solve problems involving numbers up to three decimal places	continued practice
				solve simple measure and money problems involving fractions and decimals to two decimal places.	solve problems which require knowing percentage and decimal equivalents of ${ }^{1} / 2^{\prime}{ }^{1} 4_{4^{\prime}}{ }^{1} /_{5^{\prime}}{ }^{2} /_{5^{\prime}}{ }^{4} /_{5}$ and those with a denominator of a multiple of 10 or 25 .	continued practice

Ratio and Proportion

Statements only appear in Year 6 but should be connected to previous learning, particularly fractions and multiplication and division						
					Year 6	
					solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts	
					solve problems involving the calculation of percentages [for example, of measures, and such as 15\% of 360] and the use of percentages for comparison	
					solve problems involving similar shapes where the scale factor is known or can be found	
						solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.

Measurement

COMPARING AND ESTIMATING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
make comparisons between objects relating to size, length, weight and capacity	compare, describe and solve practical problems for: * lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] * mass/weight [e.g. heavy/light, heavier than, lighter than] * capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] * time [e.g. quicker, slower, earlier, later]	compare and order lengths, mass, volume/capacity and record the results using >, < and =	(non-statutory) continue to compare and use mixed units. Continued practice.	estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres $\left(m^{2}\right)$ and estimate the area of irregular shapes (also included in measuring) estimate volume (e.g. using 1 cm blocks to build cubes and cuboids) and capacity (e.g. using water)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(m^{3}\right)$, and extending to other units such as mm^{3} and km^{3}.
compare length, weight and capacity	sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks	continued practice	continued practice	continued practice
			estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and	continued practice	continued practice	continued practice

TELLING THE TIME						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
begin to describe a sequence of events, real or fictional, using words such as 'first', 'then'...	tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.	tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24hour clocks	read, write and convert time between analogue and digital 12 and 24hour clocks (appears also in Converting)	continued practice/word problems	continued practice/word problems
	recognise and use language relating to dates, including days of the week, weeks, months and years	know the number of minutes in an hour and the number of hours in a day. (appears also in Converting)	estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Comparing and Estimating)	continued practice/word problems	continued practice/word problems	continued practice/word problems
				solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days (appears also in Converting)	solve problems involving converting between units of time	continued practice/word problems

CONVERTING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		know the number of minutes in an hour and the number of hours in a day. (appears also in Telling the Time)	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)	use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
				read, write and convert time between analogue and digital 12 and 24-hour clocks (appears also in Converting)	solve problems involving converting between units of time	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Measuring and Calculating)
				solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days (appears also in Telling the Time)	understand and use equivalences between metric units and common imperial units such as inches, pounds and pints	convert between miles and kilometres

Geometry - Properties of Shape

IDENTIFYING SHAPES AND THIER PROPERTIES

IDENTIFYING SHAPES AND THIER PROPERTIES						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
talk about and explore 2 D and 3D shapes (for example, circles, rectangles, triangles and cuboids) using informal and mathematical language: sides, corners, straight, flat, round; select shapes appropriately: flat surfaces for a building, a triangular pattern for a roof, etc.; combine shapes to make new ones - an arch, a bigger triangle, etc.	recognise and name common 2-D and 3-D shapes, including: * 2-D shapes [e.g. rectangles (including squares), circles and triangles] * 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line	(non-statutory) pupils knowledge of the properties of shapes is extended to symmetrical/nonsymmetrical polygons and polyhedral. Pupils extend their use of the properties of shapes.	identify lines of symmetry in 2-D shapes presented in different orientations	identify 3-D shapes, including cubes and other cuboids, from 2D representations	recognise, describe and build simple 3-D shapes, including making nets (appears also in Drawing and Constructing)
		identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces				illustrate and name parts of circles, including radius, diameter and circumference and
		identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]				diameter is twice the radius
select, rotate and manipulate shapes in order to develop spatial reasoning skills						
DRAWING AND CONSTRUCTING						
			draw 2-D shapes and make 3-D shapes using modelling	complete a simple symmetric figure with	draw given angles, and measure them in degrees (${ }^{\circ}$)	draw 2-D shapes using given dimensions and angles

			materials; recognise 3-D shapes in different orientation and describe them	respect to a specifi line of symmetry		recognise, describe and build simple 3-D shapes, including making nets (appears also in Identifying Shapes and Their Properties)
COMPARING AND CLASSIFYING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
compose and decompose shapes so that children can recognise a shape can have other shapes within it, just as numbers can	(non-statutory) pupils recognise shapes in different orientations and sizes	compare and sort common 2-D and 3-D shapes and everyday objects	(non-statutory) pupils knowledge of the properties of shapes is extended to symmetrical/nonsymmetrical polygons and polyhedral. Pupils extend their use of the properties of shapes.	compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	use the properties of rectangles to deduce related facts and find missing lengths and angles distinguish between regular and irregular polygons based on reasoning about equal sides and angles	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
ANGLES						
			recognise angles as a property of shape or a description of a turn		know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
			identify right angles, recognise that two right	identify acute and obtuse angles and	identify:	recognise angles where they meet at

			angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	compare and order angles up to two right angles by size	$*$ angles at a point and one whole turn (total 360°) $*$ angles at a point on a straight line and $1 / 2 a$ turn (total 180°) other multiples of 90°	a point, are on a straight line, or are vertically opposite, and find missing angles
			identify horizontal and vertical lines and pairs of perpendicular and parallel lines			

Geometry - Position and Direction

POSITION, DIRECTION AND MOVEMENT						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
understand position through words alone - for example, "the bag is under the table" - with no pointing; describe a familiar route; discuss routes and locations, using words like 'in front of' and 'behind'	describe position, direction and movement, including half, quarter and threequarter turns.	use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)	continued practice	describe positions on a 2-D grid as coordinates in the first quadrant	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants)
				describe movements between positions as translations of a given unit to the left/right and up/down		draw and translate simple shapes on the coordinate plane and reflect them in the axes.
draw information from a simple map (from Understanding the World)				plot specified points and draw sides to complete a given polygon		

PATTERN

talk about and identify patterns around them, for example, stripes on clothes, designs on rugs/wallpaper. Use informal language like 'spotty', 'pointy',		PATERN combinations of mathematical objects in patterns and sequences			
'blobs' etc.;					
extend and					
create ABAB					
patterns - stick,					
leaf, stick, leaf;					
notice and					
correct an error					
in a repeating					
pattern					

Statistics

INTERPRETING, CONSTRUCTING AND PRESENTING DATA						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
experiment with their own symbols and marks, as well as numerals	continued practice	interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
		ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				
		ask and answer questions about totalling and comparing categorical data				
SOLVING PROBLEMS						
			solve one-step and two-step questions [e.g. 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average

Algebra

EQUATIONS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction) solve problems, including missing number problems, involving multiplication and division, including integer scaling (copied from Multiplication and Division)	continued practionce of missing number problems in more complex contexts	use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically
		recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 (copied from Addition and Subtraction)				find pairs of numbers that satisfy number sentences involving two unknowns
	represent and use number bonds and related subtraction facts within 20 (copied					enumerate all possibilities of combinations of two variables

| | from Addition and
 Subtraction) | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

FORMULAE						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				perimeter can be	perimeter can be	use simple formulae
				as $2(a+b)$ where a and b are the dimensions in the same unit. (copied from nsg measurement)	algebraically as 2(a $+b$) where a and b are the dimensions in the same unit. (copied from nsg measurement)	recognise when it is possible to use formulae for area and volume of shapes (copied from Measurement)
	SEQUENCES					
	sequence events in chronological order using language such as: before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening (copied from Measurement)	compare and sequence intervals of time (copied from Measurement)	continued practice	continued practice	continued practice	generate and describe linear number sequences
		order and arrange combinations of mathematical objects in patterns (copied from Geometry: position and direction)				

